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Abstract: Background: Cancer and other disorders such as inflammation, autoimmune diseases and diabetes are the 
major health problems observed all over the world. Therefore, identifying a therapeutic target molecule for the treat-
ment of these diseases is urgently needed to benefit public health. C-Phycocyanin (C-PC) is an important light yield-
ing pigment intermittently systematized in the cyanobacterial species along with other algal species. It has numerous 
applications in the field of biotechnology and drug industry and also possesses antioxidant, anticancer, anti-
inflammatory, enhanced immune function, including liver and kidney protection properties. The molecular mecha-
nism of action of C-PC for its anticancer activity could be the blockage of cell cycle progression, inducing apoptosis 
and autophagy in cancer cells.  

Objectives: The current review summarizes an update on therapeutic applications of C-PC, its mechanism of action 
and mainly focuses on the recent development in the field of C-PC as a drug that exhibits beneficial effects against 
various human diseases including cancer and inflammation.  

Conclusion: The data from various studies suggest the therapeutic applications of C-PC such as anti-cancer activity, 
anti-inflammation, anti-angiogenic activity and healing capacity of certain autoimmune disorders. Mechanism of 
action of C-PC for its anticancer activity is the blockage of cell cycle progression, inducing apoptosis and autophagy 
in cancer cells. The future perspective of C-PC is to identify and define the molecular mechanism of its anti-cancer, 
anti-inflammatory and antioxidant activities, which would shed light on our knowledge on therapeutic applications of 
C-PC and may contribute significant benefits to global public health. 
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1. INTRODUCTION 

 C-Phycocyanin belongs to biliproteins, a group of colored pho-
toreceptors which capture light energy and transfer it to chloro-
phylls for photosynthesis. Most of the C-PC’s are isolated from 
cyanobacteria or blue-green algae and also from red algae, glauco-
phyta, cryptophyta, etc. [1-3]. Additionally, C-PC is shown to pos-
sess anticancer [4], immunity promoting [5], antioxidative [6] and 
anti-inflammation properties. Furthermore, C-PC also acts as non-
toxic photo-sensitizer used in the adjuvant Photodynamic Therapy 
(PDT) of tumours [7]. Spirulina platensis (Arthospira platensis), a 
member of cyanobacteria has an eminent source of C-PC including 
other proteins (>60%) which hydrolyzed into bioactive peptides [8-
10]. Moreover, other species of Spirulina such as Spirulina fusi-
formis [11] and Spirulina maxima [12, 13] were also considered as 
potent source of C-PC. 

  In addition, C-PC was isolated from other cyanobacterial spe-
cies including Coccochloris elabens [14], Synechococcus lividus 
[15], Synechocystis PCC 6803 [16], Synechococcus vulcanus [17], 
Synechococcus elongate [18], Lyngbya [19, 20], Oscillatoria quad-
ripunctulata [20], Aphanizomenon flos-aquae [21], Arthronema 
africanum [11], Phormidium fragile [22], Nostoc [23], Synechococ-
cus sps [24], Anabaena marina [25], Oscillatoria tenuis [26], Pseu-
danabaena sps. LW0831 [27], Limnothrix [28] and Oscillatoria 
minima [29]. Moreover, C-Phycocyanin was isolated from a few 
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red algal species such as Cyanidium caldarium [30], Gracilaria 
chilensis [31] and Centroceras clavulatum [2]. Furthermore, C-PC 
was also produced from cryptophyta and glaucophyta species such 
as Chroomonas and Hemiselmispacifica [32, 33] and Cyanophora 
paradoxa [34, 35]. In the present review, we emphasized the struc-
ture and characterization of C-PC that belongs to Spirulina platen-
sis and minor modifications are also possible depending on the 
algal species. Our laboratory also studied the impact of C-PC on 
cyclooxygenase-2 (Cox 2) inhibition as well as induction of apopto-
sis [36-38]. 

1.1. Phycobilisomes, Phycobiliproteins and Light Harvesting 

Process 

  Blue-green algae along with certain primitive plant groups, 
hold two distinct photosynthetic Reaction Centers (RCs), which 
include P700 and P680 of Photosystem I (PSI) and Photosystem II 
(PSII). Each RC is associated with an antenna of LHC (Light-
harvesting Complex) [2, 39]. These light harvesting complex of 
blue-green and red algae including cryptophytes and glaucophytes 
generally consist of Phycobilisomes (PBSs) which in turn consist of 
key photosynthetic pigment molecules, the Phycobiliproteins 
(PBPs) (Fig. 1).  

 Phycobiliproteins are water soluble and light intake protein-
pigment aggregates found in certain algae and photosynthetic bacte-
ria [29, 40]. As mentioned above, these protein-pigments absorb 
light and transfer energy to the reaction centers of photoactive 
compounds confined in the thylakoid membranes. These are ma-
jorly found as fluorescent proteins and expressed as natural color-
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ants due to their non-toxic and non-carcinogenic nature [41]. Phy-
cobiliproteins are multichain holoproteins consisting of apo-
proteins and covalently attached phycobilins. Moreover, these are 
open chain tetrapyrrole chromophores with no metal complexes. 
Phycobiliproteins are divided mainly into three major groups de-
pending on different chromophores i.e. phycoerythrene (PE, bright 
pink), phycocyanin (PC, cobalt blue) and allophycocyanin (APC, 
brighter aqua blue) [42]. The major role of phycobiliproteins was 
photosynthetic light harvesting and their absorption maxima are 
approximately 570 nm (PE), 630 nm (C-PC) and 650 nm (APC) 
located at wavelengths where chlorophylls have low extension co-
efficient [43]. These phycobiliproteins are organized as su-
pramolecular structures that assemble on PSII of superficial layer of 
thylakoid membrane and form phycobilisome as mentioned above 
for the purpose of maximizing energy transfer to chlorophyll com-
plex proteins (Fig. 1). In detail, phycobilisomes contain a central 
core of APC with C-PC and PE hexamers stacked on top of each 
other forming rod-shaped extensions [42]. The inner part of the rods 
is composed of C-PC hexamers and in some blue-green and red 
algae, the phycobilisome does not contain PE, while the phycobili-
somes of Aphanizomenon fols-aquae lacks APC [44]. The phycobi-
lisome core-membrane linker protein ApcE may provide a flexible 
surface, which allows phycobilisomes to attach to reaction centers 
of photosystems. The energy is transferred from PE to PC within 
the rod and then APC in the core and finally to photosystem II in-
termittently to photosystem I, that mediates through linker protein 
[45].  

1.2. Physico-chemical Properties of C-PC 

  C-PC exhibits spectral property by acting as a light harvesting 
pigment which is the basis for identification and quality. Several 
researchers described the spectral properties, vitality, absorption 
peaks and amino acid composition of C-PC as represented in Table 1 
[2, 19, 46, 47]. C-PC of S. platensis comprises α and β subunits 
which in turn consist of 162 and 172 amino acids with 16.3 and 
18.9 kDa molecular weights respectively. In microns, molecular 
weight of α subunit was 14500 μ and for β subunit, it was 15000 μ 
as shown in Table 2 [48]. Minor variation was noticed in these 
properties of C-PC which in turn depends on the algal species. For 
instance, Yu et al. (1999) reported differently that molecular 
weights of both α and β subunits of S. platensis were 14900 μ and 
17200 μ respectively (Fig. 2). 

Table 1. Spectral property of C-PC. 

Pigment C-PC 

Emission maxima  ~642 nm 

Quantum yield Φ 0.81 

Absorption peak m  ~621 nm 

Extinction coefficient 1.54x106 M-1 cm-1 

Fluorescence absorbance  0.15 nm 

Fluorescence emission  647 nm 

Absorptivity  7.0 (L/g.cm) 

 

  Both pH and temperature play an essential role in the stability 
of C-PC which in turn depends on strain, isolation method and con-
ditions. Generally, C-PC is stable under 40ºC and above this tem-
perature the pigment gets decompose and the optical density de-
creases [49]. The concentration and half-life of C-PC in solution 
decrease expeditiously when incubated at temperatures between 
47ºC and 64ºC, specifically, it remains at 50% after incubating at 
59oC for 30 min [7]. Moreover, C-Phycocyanin has its maximal 
constancy in the pH range from 5.5 to 6.0 and some reports stated 
that color and optical density were almost constant between 4.0 to 
8.5 pH conditions [49]. Some of the membrane technologies were 
also discovered to enhance the stability of C-PC extracts obtained 
from the ultrasonic breakage of Spirulina platensis [50]. Apart from 
light harvesting function, C-PC is also used as a food additive, 
cosmetic colorant, fluorescence detection probe and plays a secon-
dary role as intercellular nitrogen storage compounds that are mobi-
lized for other purposes during nitrogen shortage period [51, 52]. 
Majorly, the role of C-PC as a therapeutic agent is discussed in 
detail in the below paragraphs.  

1.3. Regulation of C-PC Synthesis 

  Cyanobacterial species carry two genes namely C-PCA and C-
PCB encoding α and β chains of C-PC. Both the genes are located 
in the C-PC operon and translated from the same  mRNA  transcript  

 

Fig. (1). Typical structure of phycobilisome along with different phycobiliproteins in cyanobacterial cell. APC-Allophycocyanin, TM-Thylakoid membrane. 
(A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (2). 3D crystal structure of C-PC retrieved from RCSB PDB format and 
chemical structure of C-PC. 

 
[53]. Genes that code for linker proteins and enzymes that are in-
volved in phycobilin synthesis and phycobiliproteins are often di-
rectly and adjacently forming gene clusters. In red algae, the phy-
cobiliprotein and the linker protein genes are located on the plastid 
genome [54]. The expression of C-PCA and C-PCB genes are con-
trolled by light, temperature, nutrients etc. [55]. Low light intensi-
ties excite the synthesis of C-PC and other pigments, while pigment 
synthesis is restrained at high light intensities [56]. In Arthronema 
africanum C-PC and APC concentrations were 23% and 12% of dry 
biomass at 36ºC [41]. C-PC synthesis in Anabaena species was 
stimulated by organic carbon and later it was found that there was 
almost no effect or negative effect in A. platensis [56, 57]. In addi-
tion, glucose repressed the C-PC production in red alga, Galderia 
sulphuraria [58]. Several other environmental factors including the 
habitat of species also influence the C-PC synthesis [2]. 

2. THERAPEUTIC APPLICATIONS OF C-PC 

2.1. C-PC as an Anti-cancer Agent  

 Several groups have demonstrated the anti-cancer activity of  
C-PC both in vitro and in vivo. C-PC inhibited cell proliferation, 

migration and colony formation, promoted apoptosis, cell cycle 
arrest in lung cancer cell lines like NCI-H1299, NCI-H460 and 
LTEP-a2by down regulating NF-kB signalling (Fig. 3) [59]. C-PC 
exhibited anti-migratory and anti-proliferative activity in H358, 
H1650 and LTEP-a2 cancer cells by serine/threonine-protein kinase 
1 silencing and inhibiting NF-kB signalling [60]. The combination 
of selenium with C-PC(Se-PC) exhibits anti-cancer, anti-oxidant 
and anti-inflammatory properties. Se-PC inhibited HepG2 liver 
cancer cells growth and influenced cell death through the radical 
generation. Additionally, invivo experiment with Se-PC combina-
tion and C-PC alone groups showed 75.4% and 52.6%tumor inhibi-
tion respectively indicating more efficacy of the combination group. 
In liver tumor microenvironment, C-PC enhanced the activity of 
antioxidant enzymes, the damage of hematocyte and mitochondria-
mediated apoptosis during the early stage of tumor development 
[61]. The conjugation of C-PC and Bovine Serum Albumin (BSA) 
with stabilized polypyrrole nanoparticles inhibited cancer cells by 
damaging cellular macromolecules through ROS generation [62]. 
C-PC combined with Hematoporphyrin Monomethyl Ether (HME) 
and nanoparticles of magnetic Fe3O4 [modified by oleic acid (OA) 
and 3-triethoxysilyl-1propanamine] inhibited MCF-7 cell growth 
(breast cancer cells) by releasing ROS both in in vitro and in vivo. 
MCF-7 cells injected into BALB/c mice subcutaneously induced 
STAT3 phosphorylation and Bax mediated apoptosis [63]. The bio-
fabrication of silver nanoparticles with C-PC showed inhibition of 
tumor growth in Ehrlich ascites carcinoma. C-PC exhibited cytotox-
icity effect and inhibitory effect on MCF-7 cells [64]. Photosensi-
tized C-PC at 625 nm illumination produced ROS, generated cyto-
toxic stress through ROS induction in breast cancer cells and exhib-
ited low-level light therapy [65]. C-PC (96 µg/L) combined with 
ATRA (0.073 mM) and then treated to HeLa cell line and A549 
lung cancer cells reduced ATRA toxicity, downregulated the cell 
growth, cell cycle progress, promoted cell cycle arrest G0/G1 and 
apoptosis, downregulated the expression of Cyclin D1, CDK4, Bcl-
2, CD59 upregulated Caspase-3 [66] promoted complement medi-
ated cytolysis [67, 68]. C-PC from A. africanum showed the anti-
tumor activity at a concentration of 100 µg/ml treated for 24 hrs, 
suppressed the myeloid Graffi tumor also lead to boost the activities 
of Cu/ZnSOD, MnSOD and Glutathione reductase. In Graffi tumor 
cells C-PC elevated SOD (superoxide dismutase)and CAT (cata-
lase) activity which accumulates the H2O2 to initiate apoptotic proc-
ess and adversely impact the development of tumor by a cysteine 
protease that play a vital responsibility during apoptosis [69].C PC 
isolated from cynobacterium of Spirulina platenesis showed anti-
cancer effect in prostate cell lines (LNCaP). Treatment of human 

Table 2. α and β subunits of C-PC. 

S.No Properties   α Chain β Chain 

1. Amino acid sequence  MKTPLTEAVSIADSQGRFLSSTEIQVAFG 
RFRQAKAGLEAAKALTSKADSLISGAAQA 

VYNKFPYTTQMQGPNYAADQRGKDKCAR 

DIGYYLRMVTYCLIAGGTGPMDEYLIAGI 

DEINRTFELSPSWYIEALKYI 

KANHGLSGDAATEANSYLDYAINALS�

MFDAFTKVVSQADTRGEMLSTAQIDA 
LSQMVAESNKRLDAVNRITSNASTIVSNAARSLFA 

EQPQLIAPGGNAYTSRRMAACLRDME 

IILRYVTYAVFAGDASVLEDRCLNGLRETY 

LALGTPGSSVAVGVGKMKEAALAIVND 

PAGITPGDCSALASEIASYFDRACAAVS 

2. Formula C781H1218N208O243S6 -C780H1267N221O252S10�

3. Theoretical  
isoelectric point 

5.83 pI -4.96 pI�

4. Molecular weight in 
Microns 

14,500 μ -15,000 μ 

5. kDa 16.3 kDa -18.9 kDa 
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hepatoma cells (HepG2) with C-PC resulted in a great decrease in 
the propagation of cells at 7.0 µg/ml and LC 50 is at 1.75 µg/ml 
[70]. C-PC suppressed the proliferation of K562 cells, the changes 
occurred in the integrin β1 and intercellular Focal Adhesion Kinase 
(FAK) expression in K562 cells was evaluated through flow cy-
tometry, MTT assay, and quantitative RT-PCR. Surface expression 
of integrinβ1on K562 cells was increased compared to normal bone 
marrow derived mononuclear cells [71]. C-PC with 50µM concen-
tration in 48h proliferate the cell lines up to 49% and also induced 
apoptosis in K562 cells, nuclear condensation, cell shrinkage, bleb-
bing that release the Cytochrome c into cytosol from mitochondria, 
down regulated Bcl-2 and cleavage of poly (ADP) ribose polym-
erase. Cells treated with C-PC in agarose electrophoresis the ge-
nomic DNA showed the typical pattern fragmentation for apoptotic 
cells that down regulates the anti-apoptotic, Bcl-2 genes [38]. C-PC 
conjugated with the Carboxymethyl Chitosan (CMC) with the lead-
ing specific ligand CD59 (CMC-CD59sp) on HeLa cells inhibited 
cell proliferation in in vitro induced cell apoptosis, upregulation of 
cleaved caspases-3 protein expression, down regulation of cyclinD1 
and Bcl-2 proteins [72]. C-PC in Pancreatic adenocarcinoma sup-
pressed the cancer in pancreas both in vitro and in vivo by upregu-
lating G2/M arrest of cell cycle and apoptosis in PANC-1 cells by 
energizing p38and JNK signaling pathways and by suppressing Erk 
pathway [73]. C-PC suppressed esophageal squamous cell carci-
noma through cell cycle arrest of G0/G1 phase; by stimulating 
apoptosis and inhibiting cell proliferation via PARP, cleaved pro-
tein caspase-3 and Bax, the expression levels of cyclin D1, Bcl-2, 
MMP-2, MMP-9 and CDK4 were suppressed [74]. C-PC isolated 
and purified from local cyanobacterial strain Limnothrix sp. NS01 
showed the anti-cancer effect in MCF-7 cell lines stimulated apop-
tosis, ROS levels, lipid peroxidation and suppressed MMP, glu-
tathione, ATP levels and expressions levels like Bcl2, Stat3, cyclin 
D1 and regulatory proteins of cell cycle [75]. C-PC loaded electros-
pun fiber mat exhibited anti-cancer activity on colon cancer by 
arresting cell cycle G0/G1 phase and suppressing Bax, Bcl-2, in-
ducing caspases-3 and cytochrome c [76]. C-PC played a crucial 
role as a COX-2 inhibitor by focusing on the angiogenic pathway in 
the chemoprevention of experimental colon cancer. Piroxicam- 
nonsteroidal anti-inflammatory drug conjugated with C-PC used in 
DMH induced colon cancer of rat. Tumor size was decreased by 
treating with C-PC combined Piroxicam and elevated levels of 
MMP-2, MMP-9 (Matrix Metalloproteinase) and VEGF-A were 
noticed [77]. C-PC had the ability to suppress the melanogenesis by 
downregulating tyrosinase at transcriptional and post-transcriptional 
levels, by this antioxidative activity and regulation potential of 
tyrosinase suppressed the melanogenic activity [78]. A375 mela-
noma cells treating C-PC by SiLAD (a35 S in vivo/in vitro labelling 
analysis for dynamic proteomics) treatment method suppressed 
proliferation of melanoma cells by down regulating GRB2-ERK1/2 
pathways [79]. C-PC purified from Spirulina platensis exhibited 
G0/G1 cell cycle arrest and DNA fragmentation, antiproliferative 
and antioxidant activity against breast adenocarcinoma cells and 
human melanoma cells [80]. C-PC (20 µg/L) derived from Spi-
rulina platensis combined with Betaine (4) enhanced anti cancer 
effect on A549 cell line, inhibited the cell cycle progress, decreased 
cell viability, NF kB activation, tumor size and increased total p38 
MAPK expression [81]. Then C PC (10 µM)combined with 
Doxorubicin(1µM) and expressed on adult rat ventricular cardio-
myocyte inhibited DOX induced Bax expression, caspase-3 activa-
tion, cytochrome c release, upregulation of Bcl-2/ Bax expression, 
prevention of DOX induced DNA fragmentation, downregulation 
of DOX stimulate apoptotic cells and upregulation of ROS [82]. 
HepG2 cells incubated with Microcystis-PC (MC-PC) were ex-
posed to He-Ne laser beam, induced apoptosis due to the localiza-
tion of C-PC in mitochondria and enhanced ROS accumulation, and 
release of cytochrome c into cytosol, these cellular changes en-
hanced the Caspase-3 and arrested cell cycle at G2/M position [83]. 
In MCF-7 cells C-PC inhibited the tumor formation enhanced im-

mune activity, upregulated expression of FAS in tumor tissue, 
CD44, NF-kB and P53 expression, promoted the restraining effect 
against proliferation, induced Caspase-9 activity and cytochrome-c 
release, reduced Bcl-2 protein, induced cell death by apoptosis 
thereby mediating photodynamic therapy [84]. 

2.2. C-PC as an Anti-inflammatory Agent 

 C-PC is a well-known anti-inflammatory compound, showing 
an anti-inflammatory effect on LPS induced macrophages cell line 
by downregulating PDCD5 and IL-6. Gonzalez et al. induced colitis 
with 4% acetic acid in rats and observed decreased levels of 
PDCD5 by suppressing the NF-kB signalling. C-PC administered 
before colitis induction with acetic acid. After 24 hrs, C-PC de-
creased myeloperoxidase enzyme activity. However, myeloperoxi-
dase enzyme activity was enhanced in the untreated colitis animal 
group [85]. Hence, the antioxidative and scavenging role of C-PC 
against ROS could cause clotic induction. C-PC inhibits allergic 
reactions by inactivating the mast cells to release histamine [86].  
C-PC inhibited inflammation-related genes in LPS-induced BV 2 
microglial cells [87]. C-PC also inhibited NO and PGE2 overex-
pression by downregulating iNOS and COX-2 and decreased  
TNF-α expression and neutrophils infiltration at the site of inflam-
mation [87]. C-PC significantly decreased the release of histamines 
from rat mast cells by inhibitingCOX-2 activity and the formation 
of leukotriene B4 [88]. C- PC downregulated NF-kB signalling, 
TNF-α, nitrate production, iNOS induction in LPS activated macro-
phage cell line RAW 264.7 [89]. C-PC has an anti-inflammatory 
role in the skin during the tropical administration using liposome 
carrier for the topical administration of proteins that enhances anti-
inflammation activity in in vitro and in vivo experiments. It was ob-
served that drug delivery is strongly dependent on vesicle composi-
tion and morphology [90]. C-PC exhibited anti-inflammation activity 
in ear swelling of mouse due to ova albumin by reducing the edema 
and activity of myeloperoxidase, which is proportional to a number of 
neutrophils accumulated at inflammation site, is an evidence for anti-
chemoattractant action of biliprotein through LTB4 expression in 
arachidonic acid mediated ear inflammation in mouse [91]. C-PC 
conjugated with N-acetylcysteine (NAC) reduces inflammation and 
oxidative stress. NAC modulated redox pathway associated en-
zymes and countered the ROS levels in a combination of C-PC. It 
reduces apoptotic markers, activation of astroglial cells and cell 
death that helps to modulate the glial cell activity [92]. 

2.3. C-PC Acts as an Antioxidant by Inhibiting ROS  

 C-PC contains bilin chromophores, closely related to bilirubin, 
an antioxidant scavenging peroxy radicals involved in generation 
ROS C-PC hydrolyzed with trypsin showed the Apo-protein made 
substantial support to the antioxidant activity [93]. The work on 
Drosophila showed the therapeutic potential of C-PC associated 
with Spirulinaon Parkinson’s disease that improved locomotor be-
havior and life span when used as a nutritional supplement [94].  
C-PC purified from species of Oscillators tenuis showed in vitro 
anti-proliferative activity, antioxidant activity, induction of apopto-
sis through cell cycle arrest of G0/G1 [95]. Antioxidant activity of 
C-PC among blue-green algae Aphanizomenonflos-aquae protects 
plasma cells and human erythrocytes from oxidative damage as 
investigated by spectral changes of C-PC that induced AAPH  
(2, 2azobis (2-amidinopropane) hydrochloride) and CuCl2. The 
incubation extract of oxidizing agents decreases the absorption of 
C-PC at 620 nm by the disappearance of blue color indicates the 
rapid oxidation of protein, it suppresses the Luminol chemilumines-
cence in a dose dependent fashion, scavenging free radicals (OH, 
H2O2and RO) and peroxides arise during the respiratory burst of 
phagocyte [96]. C-PC diminished chemiluminescence signals of 
enzymes participated in ROS production by activated phagocytes, 
Myeloperoxidase, and NADPH oxidase by interfering stimulant 
binding or pathway of arachidonic acid metabolism [97]. C-PC 
inhibited lipid peroxidation in microsomes by binding to Fe+2-
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ascorbic acid or 2,2 azobis (2-amidinopropane) hydrochloride 
(AAPH), a free radical initiator. It reduced carbon tetrachloride 
induced lipid peroxidation by the in vivo method [88]. Antioxidant 
properties of C-PC arise from metal chelation, radical scavenging 
through the involvement of free radicals in some of the disorders 
like cancer, atherosclerosis, and reperfusion injury through oxida-
tive stress. C-PC has good antioxidant and anti-inflammation prop-
erties and effectively eliminates the hydroxyl and oxygen free radi-
cals [98]. C-PC functioned as neuroprotector against neurotoxicant 
tributyltin chloride and highlighted the capacity of modulating the 
activity of glial cell in Rat brain [92]. C-PC generated cell death by 
mediating ROS and suppressing BCl-2 over expression in AK5 
cells [99]. Phycocyanobilin and Genistein suppressed proliferation 
and activation of estrogen on hepatic stellate cells by inhibiting 
NADPH oxidase activity [100]. C-PC functioned as oxalate medi-
ated renal cell injury inhibitor, could prevent chronic, and also 
acute stone diseases in humans. It suppressed the oxidative stress 
and Cisplatin instigated renal toxicity in a dose-dependent manner 
[101], suppressed antioxidant enzymes, CAT activity in the kidney, 
Glutathione-S-transferase, glutathione reductase, downregulated 
ROS and lipid peroxidation [102]. C-PC inhibited carbon tetrachlo-
ride induced hepatocyte damage in vitro and in vivo by suppressing 
serum alanine transaminase, aspartate transaminase and scavenging 
free radicles in damaged hepatocytes [103]. C-PC suppressed liver 
toxicity caused by free radicals, liver enzymes activity by down-
regulating content of ammonia and upregulating prothrombin in the 
plasma. C-PC enhanced brain CAT and GPx activities and thus 
reduced lipid peroxidation [104]. C-PC exhibited neuroprotective 
effect, protected hippocampus cell death of neurons in injury of 
cerebral ischemia/reperfusion in gerbils by blocking lipid peroxida-
tion and by inducing the Ferric Reducing Ability of Plasma (FRAP) 
due to its antioxidant activity [105]. 

2.4. C-PC Induces Cell Cycle Arrest and Apoptosis 

  Apoptosis is a programmed cell death with a sequence of 
events leading to eliminate damaged cells without releasing harmful 
substances in the surrounding area. Newer treatments are being 
studied that interfere with the cancer cells' ability to avoid apopto-
sis. Kunte M et al., showed that inhibitory function of C-PC exhib-
ited protein extract treatment for breast cancer (MDA-MB-231) and 
liver cancer cell line reduced human matrix metalloproteinase 
(MMP-2, and MMP-9) expression and down regulated cyclin-E and 

CDK2 expression [106]. Antidiabetic role of C-PC was studied in 
pancreatic cell INS-1. Methylglyoxal induced apoptosis in INS-1 
cells was due to reduced ATP levels and increased levels of intra-
cellular reactive oxygen species. C-PC protected INS-1 cells from 
methylglyoxal induced apoptosis by activating antioxidant enzymes 
and nuclear erythroid factor-2(Nrf2) [107]. Gantar et al., worked on 
the effect of anti-cancer drug topotecan on prostate cell lines which 
offers the same level of cytotoxicity when combined with C-PC. C-
PC combined with a lower amount of topotecan induced apoptosis 
through generating ROS and activating caspases [108]. C-PC 
showed good results in inducing apoptosis by measuring the ex-
pression of COX-2 levels in the cell lines, several experiments 
demonstrate correlation between overexpression of COX-2 and 
apoptosis downregulation [36]. This was proved by Reddy et al. by 
inducing with BLPS on mouse macrophage cell line, that expresses 
enhanced levels of COX-2. These cell lines were entering into 
apoptotic pathway after C-PC treatment in a concentration depend-
ent manner, but the controls without treatment entered into the can-
cer pathway. These results showed that C-PC induced apoptosis in 
RAW 264.7 cell line by DNA ladder appearance, nuclear condensa-
tion, cleavage of poly (ADP ribose) polymerase (PARP), cyto-
chrome c release demonstrated by FACS analysis [37]. Similarly, 
Subhashini et al., proved the inhibitory effect of C-PC in K562 
cells, in a time and concentration dependent manner. Characteristics 
of apoptosis like formation of membrane blebs, cell shrinkage, and 
micro nuclei formation were demonstrated using electron and fluo-
rescence microscopy [37, 38]. C-PC protected amyloid polypeptide 
induced cell death in INS-IE pancreatic beta cells by modulating 
oxidative stress, c-Jun N-terminal Kinase (JNK) and P38 pathways 
[109]. In diabetic nephropathy mice C-PC and Phycocyanobilin 
induced renal and urinary oxidative stress markers expression and 
normalized expression of NADPH oxidase [110]. In type 2 diabe-
tes, the amyloid deposits constitute of Human islet amyloid poly-
peptide (hIAPP) fibril conjugation of C-PC with Se induced apop-
tosis, inhibited the formation of ROS by protecting apoptosis of 
hIAPP fibrils for the cytotoxicity of Beta cells and acted as a poten-
tial therapeutic target for diabetes [111]. 

2.5. C-PC Function in Downregulating Autoimmune Phenotype 

 C-PC showed anti-arthritic effects by upregulating the levels of 
β-glucuronidase in arthritis induced by zymosan [112]. The devel-
opment of Cyclooxygenase (COX)-2 inhibitors for the management 

 

Fig. (3). Probable action mechanism of C-Phycocyanin in various cancer cell lines.
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of inflammation and pain could be comparable with nonselective 
Nonsteroidal Anti-inflammatory Drugs (NSAIDs) therapeutic effi-
cacy. [112]. C-PC inhibited atherosclerosis by increasing expres-
sion of CD59, suppressing muscle cell proliferation, apoptosis of 
endothelial cell, reducing fat levels in the blood [113]. C-PC linked 
tetrapyrrole Phycocyanobilin (PC) has a great potential to treat 
ischemia stroke by effecting PC12 cell survival, oxidative status, 
and gene expression. This Phycocyanobilin prevents H2O2 and glu-
tamate induced PC12 cell injury and modulates several genes re-
lated to inflammatory, immunological and proinflammatory re-
sponse and counteracted oxidative imbalance in bilateral common 
carotid arteries occlusion [114]. C-PC increased the level of anti-
oxidant enzymes in the body and lowers low-density lipoprotein, 
serum cholesterol, glutamate-oxaloacetate transaminase, glutamate-
pyruvate transaminase, and triglycerides [115]. C-PC upregulated 
CAT, SOD, GPx to prevent cardiovascular disease and atheroscle-
rosis [116]. In EAE model, C-PC acts as a neuroreceptor by induc-
ing regulatory T-cells. C-PC as an antioxidant that improved the 
myelin and axonal damage of EAE by supporting the central and 
essential mechanism for multiple sclerosis [117]. C-PC and  
IFN-beta increased the expression of genes related to gliogenesis, 
remyelination, and axon-glia and could be a potential therapeutic 
target for multiple sclerosis [118]. In patients with multiple sclero-
sis and ischemia stroke, C-PC and Phycocyanobilin enhanced re-
myelination. Whereas, C-PC in rats and mice promoted white mat-
ter regeneration in cerebral cortex in EAE analyzed electron mi-
croscopy. Recently, it was demonstrated that oxidative stress con-
trol, induction of regulatory T cells, and pro inflammatory media-
tors, gene expression modulation and COX-2 inhibition as probable 
mechanism involved in the recruitment, differentiation and oli-
godendrocyte precursor cell maturation in lesions of demyelination 
[119]. Phycocyanobilin and C-PC administered by oral route in 
C57BL/6 mice improved the clinical status and reduced IL6 expres-
sion in brain IL-6 and proinflammatory cytokines IFN-γ and also 
improved neuro-inflammation, protected from axonal loss and de-
myelination [120]. 

 Additionally, C-PC has been demonstrated as a cardioprotective 
agent. Doxorubicin treated intraperitoneally and orally caused car-
diotoxicity with higher mortality, larger ascites volume, congestion 
of liver, oxidative stress and structural organization change in heart, 
loss of myofibrils vacuolization and swelling of mitochondrial was 
observed. However, treatment with Spirulina protected mice from 
DOX-induced cardiotoxic effect resulting in less mortality, low 
level of lipid peroxidation, less volume of ascites, normal levels of 
antioxidant enzymes and minimal damage to heart tissue [121]. C-
PC has radical scavenging and antioxidant properties, thus provid-
ing protection against oxidative stress. This protection is due to the 
inhibition of necrosis, apoptosis shown by decreased TUNEL posi-
tive staining, Bax expression, caspase 3 activity. Oxidative stress, 
lipid metabolism, and mitochondrial damage play an essential role 
in cardiovascular diseases [122].  

2.6. C-PC has Wound Healing Capacity 

 Wound healing is a process that requires the coordinated ac-
tions of inflammatory cells releasing cytokines, cell-cell contact and 
cell-matrix communication. C-PC treatment on wound-induced the 
cellular migration towards the wounded area by regulating 
Urokinase-type plasminogen activator (uPA) through cAMP-
dependent protein kinase A pathway. RNA study data showed that 
uPA has importance for the C-PC mediated migration of fibro-
blasts. Furthermore, C-PC enhanced the G1 phase of cell cycle and 
increased the cell cycle progression through cyclin dependent 
kinases 1 and 2 in uPA-independent manner and also elevated ex-
pression of chemokines and Rho-GTPases in uPA-dependent man-
ner [123]. C-PC as a scaffold molecule upregulated hydroxyproline, 
hexamine and protein content and downregulated contents of uronic 
acid in wounds. C-PC influenced the higher rate of migration on 
keratinocytes co-cultured with fibroblasts acting as an alternative 

scaffold material for wound healing [124]. C-PC enhanced the pro-
liferation of human keratinocytes (HS2) and stimulated tissue re-
generation in Sprague-Dawley wounded rats [125]. 

CONCLUSION 

 Cancer and other diseases such as inflammation, autoimmune 
diseases and diabetes are major public problems all over the world. 
There is a desperate need to develop a therapeutic target molecule 
for the treatment of these diseases. C-Phycocyanin isolated from 
various algal cells has been shown to exhibit pleiotropic properties 
with a wide range of therapeutic applications. In the current review, 
we summarized therapeutic applications of C-PC such as anti-
cancer activity, anti-inflammation, anti-angiogenic activity and 
healing capacity of certain autoimmune disorders. C-PC showed an 
enhanced anti-cancer effect when conjugated with drugs or nano-
particles also highlighted. Moreover, C-PC showed antidiabetic 
property by enhancing insulin sensitivity which has potential clini-
cal utility in type-2 diabetes. Although, several studies have been 
demonstrated regarding therapeutic applications of C-PC, very little 
is known about the molecular mechanism of action of C-PC in the 
disease environment. It has been well studied that C-PC inhibited 
cancer cell growth by down regulating BCl-2 cyclin D1, cyclin E 
and CDK 2 genes. Moreover, C-PC showed anti-oxidant properties 
by enhancing anti-oxidant enzymes, mediating apoptosis and induc-
ing cleaved caspase gene expression. However, the role of C-PC in 
cancer microenvironment and type of cancer cell line is controver-
sial. Hence, a lot of research is required to clarify the actual action 
mechanism of C-PC in tumor microenvironment and abovemen-
tioned disease conditions. Elucidating the action mechanism of  
C-PC would shed light on our knowledge of therapeutic applica-
tions of C-PC for various diseases in the near future. 
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